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__ Summary

Over the last two years, we have used several different numerical techniques to study

a variety of intrinsically correlated electron systems. The three main types of numerical

techniques we have used arek (1) finite-temperature quantum Monte Carlo (QMC); (2) ex-

act diagonalization; and (3) numerical renormalization groups. We have made substantial

progress both on developing and improving the numerical algorithms and in using these

methods to study interesting systems. We have developed techniques for analytically con-

tinuing imaginary-time QMC data to obtain dynamical properties, and have used these

techniques to study pseudogap and gap formation in the repulsive and attractive Hubbard

models. We have developed a program to calculate two particle interaction vertices with

full frequency and momentum dependence using QMC, and have studied possible magnetic

and superconducting instabilities in the Hubbard model. We have used exact diagonaliza-

tion to calculate the spectral weight function for the 4 x 4 Hubbard model, and to study

pair-binding in small Hubbard "molecules", which may have relevance to superconduc-

tivity in fullerenes. We have developed a new momentum-space renorrialization group

approach, based on Wilson's numerical renormalization group for the Kondo problem, for

finite Hubbard lattices. We have also discovered why previous attempts at using Wilson's

approach in a real-space blocking scheme fail, and we have developed a new approach,

based on density matrices, which eliminates the flaws of the old approach. When applied

to Heisenberg spin chains, this approach provides results substantially better than the best

available from Monte Carlo. We have used it to obtain the spatial spin density distribution

of the fractional S = 1/2 spins at the ends of open S = 1 chains, as well as a variety of

other properties.
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Our research over the last year has been divided roughly equally between developing

and improving numnerical algorithms for intrinsically correlated electron systems, and using

the latest such techniques to study sonie of these systems. It is important for work to

be done in the first area as well as the second in order for progress to continue in our

understanding of these systems. While most groups use only one numerical technique, and

apply it to a variety of systems, we use several completely different numerical methods. In

this way we can choose the best method for each system we want to study. We have used

three different numerical techniques in the last two years: (1) finite-temperature quantum

Monte Carlo (QMC); (2) exact diagonalization; and (3) numerical renormalization groups.

We have found that having active projects using several different methods fosters cross-

pollination of ideas between the methods. For example, the new Block World-Line method

currently under development by our group (described in our proposal for the next three

years) combines ideas from Monte Carlo and exact diagonalization, and is .-elated to some

of the new ideas we have developed in using density matrices for numerical renormalization

groups.

The quantum Monte Carlo techniques we use are excellent at computing imaginary

time quantities, but it is more difficult to obtain information on dynamics. Currently the

best technique to obtain dynamics from (QMC) is to use the maximum entropy method to

analytically continue the QMC imaginary time data. In order to obtain high quality results,

however, we found that we needed to spend some time supplementing the information

contained in the QMC. (The niaxiinuiiin entropy method can combine a variety of sources

of information in the production of an optimum fit for the spectral function). We settled

on analytic moments of the spectral function as the source of additional information, and

found new expressions for the first few moments for the 2D Hubbard model. We found

that the information contained in the moments nicely complenmented the information from

QMC to produce excellent results. We have used this method to study of the single-

particle spectral weight and density of states of the Hubbard model [1-4]. One of the most

interesting applications to date of these techniques has been a study of the formation of . oi

gaps and pseudogaps in the spectral weight function at half-filling [2,4]. At half-filling r,,•

at zero teml)erature, there is a well-defined anutiferroinagnetic gap, corresponding to long- ` "'0"
" Leati on

ranged antiferromagnetic order. At high temperatures, the spin-spin correlation length is --_

very short and this gap is not present. Schrieffer's spin bag picture for high Tc is based on -

a pseudogap being present when the spin-spin correlations are greater than a few lattice • 'dbIl tty I
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spacings. We found that a pseudogap is only present when the spin-spin correlations are

comparable to the size of the lattice. At any finite temperature the correlation length is

known to be finite, implying that no pseudogap is present in the infinite lattice except at
T=O (for moderate coupling).

We have made consideralhle progress iII l1Iiherstalding exactly how to distinguish us-

ing QMC between a superconductor, an ordinary metal, and an insulator directly from
the current-current correlation function for a model for which the nature of possible in-
stabilities is unknown [5,6]. For example, ordinarily we have tested for superconductivity

by looking at several pair-susceptibilities and looking for enhancement as the temper'a-
ture is lowered. However, this approach has been criticized as misleading if the pair-field
symmetry we choose is different from what is actually there or if the quasiparticle weight
is very small. Perhaps the system would be found to have clear superconducting corre-

lations if the physically correct pair-field operator had been guessed. By analyzing the
current-current correlation function we can avoid all these possible difficulties and deter-
mine directly whether the system is superconducting (provided we can get close to the
transition temperature). Using this method, we studied the positive- and negative-U Hub-
bard models. We found that the ground state of the half-filled positive-U Hubbard model
is an insulator, the doped state is a metal (at the temperatures accessible to QMC), and
the negative-U Hubbard model is a superconductor.

We have recently begun studying the two-particle scattering vertex of the Hubbard

model [7,8]. This vertex is a function of three different momenta and three different
frequencies, and hence has not been studied before. We have found that it is just within

our current computing capabilities to calculate the vertex. The difficulty is partly because
of storage requirements for such a large object and partly because the fluctuations in the
two-particle vertex are larger than in simpler quantities. The vertex allows us to measure
the momentum and frequency dependence of possible instabilities in both the particle-
particle and particle-hole channels. By inverting the Bethe-Salpeter equation, we can

study directly the irreducible vertex, and compare it with analytic approaches. If there
is a superconducting instability, this approach will tell us exactly what its nature is. We
have also been comparing with both the random phase approximation and third-order

perturbation theory, to test approximate theories for the Hubbard model.

We have also used QMC to simulate the Holstein model [9], an electron-phonon model.

This model allows us to study the competition between different types of order, such as
superconductivity and charge-density-wave order. Similar types of competition occur in
the high- temperature superconductors between antiferromagnetism and superconductivity.
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R.N. Noack, my post-doc, came this fall with considerable expertise in the simulation of the

Holstein model. We studied the effects of next-nearest neighbor hopping on the supercon-

ducting properties of the Holstein model. We found, as expected, that the superconducting

transition temperature can be enhanced by the extra hopping term.

While exact diagonalization is useful only for small systems, it does not suffer from the

minus sign problem. In addition, dynamical properties can be calculated exactly without

use of the maximum entropy method or other analytic continuation methods. We have

used this technique to calculate the spectral weight function of a 4 x 4 Hubbard lattice

[10]. Although the computational capability has existed for several years to calculate the

spectral weight for a 4 x 4 system, the calculation is sufficiently difficult that only very

recently have there been any results reported. The results are useful for comparing both

with experiments, such as angular resolved photoemission, and with QMC results using

maximum entropy.

We have also used exact diagonalization to calculate pair-binding energy differences

for several Hubbard systems [11]. These calculations were designed to test the ideas of

Chakravarty and IKivelson on buckyball superconductivity. Chakravarty and Kivelson put

forth a theory last year on superconductivity in C60 compounds based on a pair-binding

effect on a single buckyball which they mnodeled with a Hubbard model. Their numerical

calculations to support the theory were based oni second-order perturbation theory, which

left open to some question whether the effect was real. We performed exact diagonalization

calculations on two small Hubbard "molecules": the 12-site truncated tetrahedron, and

the 8-site cube. The truncated tetrahedron in particular has a number of similarities to

the C60 structure. We found the pair binding effect to be present for intermediate coupling

in both cases, lending support to Chakravarty and Kivelson's theory. We also found that

second order perturbation theory wvorks rather well in these systemrs, further supporting

the theory.

The most challenging problem for QMC studies lies in finding which of many competing

types of states wins out at T=O. This requries very low teml)erature studies and large

lattices. Even in models with no sign problem (such as the Holstein model) getting accurate

results at low enough temperatures is very challenging. For this reason we have been

developing competing methods, based on Wilson's numerical renormalization group for

the Kondo problem, to find ground and excited state properties of various systems. Our

first attempt in this direction was based on the momentum-space representation of the

Hubbard model [12]. By working in momntumn space, we hoped to sidestep the well-

known problems of real-space blocking ap)lproaches. We used it with fairly good results on
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a 4x4 Hubbard lattice, where we could compare with exact diagonalization.

More recently we have found out how to fix the real-space blocking method so that it
works for almost any lattice model [13-15]. We reformulated the old approach in terms of

density matrices. We were able to show that the new approach is optimal in a certain sense,
while the old approach was far from it. The approach does not require small couplings,

can treat disordered systems, and of course, does not have the minus sign problem that

plagues quantum Monte Carlo. This method is especially suitable for 1D problems, and
we have been using it on Heisenberg spin chains, a very interesting problem for both

theoretical reasons (e.g. the Haldane gap) and experimental reasons (e.g. NENP materials

are modeled by these chains). The method performs substantially superior to any other
numerical method for these chains--for example, whereas the best quantum Monte Carlo
can determine the ground state energy of the infinite S = 1 chain to about 4 digits, this

method can determine it to 9 or 10 digits. The best previous value for the Haldane gap

was A = 0.41; we have determined two more digits, A = 0.4105(1). We have also used
it to obtain the spatial spin density distribution of the fractional S = 1/2 spins at the
ends of open S = 1 chains, as well as a variety of other properties. The computational

resources required for these calculations are relatively small; if extreme accuracy is not

required, a modest workstation is adequate. The density matrix framework provides an
important conceptual basis for all numerical RGs; for example, the zero-temperature, one-

dimensional (1D), real-space algorithm we first developed could easily be generalized to
finite temperature, 2D or 3D, or momentum space (although the calculations may not

always be practical).

The following individuals have been supported with our ONR grant. Reinhard Noack,

a former student with D. J. Scalapino at UCSB. is my postdoc. He is an expert in QMC
simulations and the Holstein model, and has been involved in the renormalization group
work. Guoshun Feng, a graduate student, did the exact diagonalization of a 4x4 Hubbard

model, and is now working on extending the renormalization group mcthod to the 1D
Hubbard system. Marco Vekic, another graduate student, worked on the QMC simulations

of the Holstein model. He is now developing a new Monte Carlo method, the block world

line method mention above.
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